IEEE Access (Jan 2019)

Densely Connected Convolutional Networks With Attention LSTM for Crowd Flows Prediction

  • Wei Li,
  • Wei Tao,
  • Junyang Qiu,
  • Xin Liu,
  • Xingyu Zhou,
  • Zhisong Pan

DOI
https://doi.org/10.1109/ACCESS.2019.2943890
Journal volume & issue
Vol. 7
pp. 140488 – 140498

Abstract

Read online

With the rapid progress of urbanization, predicting citywide crowd flows has become increasingly significant in many fields, such as traffic management and public security. However, influenced by the complex spatiotemporal relations in raw data and other factors, such as events and weather, obtaining a precise prediction is challenging. Some previous works attempted to address this problem using various ways, such as autoregressive integrated moving average, vector auto-regression and some deep learning models. However, seldom can these methods comprehensively capture the spatiotemporal correlations. In this paper, we propose a novel spatio-temporal prediction model that is based on densely connected convolutional networks and attention long short-term memory (ST-DCCNAL), to simultaneously predict the inflow and outflow of the crowds in regions divided within a specific city. The ST-DCCNAL model consists of three parts: spatial part, external factors part and temporal part. In the spatial part, we employ densely connected convolutional networks to extract spatial characteristics at different levels. The external factors part utilizes a fully connected network to extract features from auxiliary information. In the last part, an attention-based long short-term memory module is leveraged to capture the temporal pattern. To demonstrate the practicality and effectiveness of the proposed model, we evaluate it using two separate real-world datasets of taxis in Beijing and bikes in New York. The experimental results confirm that the performance of our model is better than that of other baseline methods.

Keywords