IEEE Access (Jan 2020)

Tracking and Cooperative Designs of Robot Manipulators Using Adaptive Fixed-Time Fault-Tolerant Constraint Control

  • Chih-Lyang Hwang,
  • Wen-Shyong Yu

DOI
https://doi.org/10.1109/ACCESS.2020.2979795
Journal volume & issue
Vol. 8
pp. 56415 – 56428

Abstract

Read online

At the outset, a nonlinear dynamic system for the generalized robots with input constraint is given to design an adaptive fixed-time fault-tolerant constraint control (AFTFTCC) for trajectory tracking. The proposed AFTFTCC includes a nonlinear filtering tracking error, which can shape the system response. As the operating point is in the neighborhood of the zero nonlinear filtering tracking error, nonlinear filtering gains are increasing to accelerate its tracking ability. The skew-symmetric matrix's condition for the time-derivative of the inertia matrix and Coriolis and centrifugal force matrix is not required. The upper bound of uncertainties is learned to improve system performance. The stabilities of the closed-loop system are verified by the Lyapunov stability theory. Without true force feedback, the cooperative task of multiple robots with multiple arms is also addressed by the proposed AFTFTCC. Finally, two examples, including the trajectory tracking control of planar three-link robot arm and the cooperative control of dual planar three-link robot arms, are employed to validate the effectiveness and robustness of the proposed control.

Keywords