Aerospace (May 2024)

Investigation of Spray Characteristics for Detonability: A Study on Liquid Fuel Injector and Nozzle Design

  • Myeung Hwan Choi,
  • Yoojin Oh,
  • Sungwoo Park

DOI
https://doi.org/10.3390/aerospace11060421
Journal volume & issue
Vol. 11, no. 6
p. 421

Abstract

Read online

Detonation engines are gaining prominence as next-generation propulsion systems that can significantly enhance the efficiency of existing engines. This study focuses on developing an injector utilizing liquid fuel and a gas oxidizer for application in detonation engines. In order to better understand the spray characteristics suitable for the pulse detonation engine (PDE) system, an injector was fabricated by varying the Venturi nozzle exit diameter ratio and the geometric features of the fuel injection hole. Analysis of high-speed camera images revealed that the Venturi nozzle exit diameter ratio plays a crucial role in determining the characteristics of air-assist or air-blast atomization. Under the conditions of an exit diameter ratio of Re/Ri = 1.0, the formation of a liquid film at the exit was observed, and it was identified that the film’s length is influenced by the geometric characteristics of the fuel injection hole. The effect of the fuel injection hole and Venturi nozzle exit diameter ratio on SMD was analyzed by using droplet diameter measurement. The derived empirical correlation indicates that the atomization mechanism varies depending on the Venturi nozzle exit diameter ratio, and it also affects the distribution of SMD. The characteristics of the proposed injector, its influence on SMD, and its velocity, provide essential groundwork and data for the design of detonation engines employing liquid fuel.

Keywords