Gong-kuang zidonghua (Sep 2023)

Research on remote control technology of mining equipment based on 5G

  • LI Chenxin

DOI
https://doi.org/10.13272/j.issn.1671-251x.18089
Journal volume & issue
Vol. 49, no. 9
pp. 90 – 97

Abstract

Read online

Mining 5G provides a high-speed information transmission channel for the construction of intelligent mines. The remote control application of mining equipment based on 5G is a key means to achieve less human and unmanned mine production. The paper analyzes the shortcomings of using 4G and WiFi6 in remote control of mining equipment, and points out that 5G technology is a necessary support method for achieving remote control of mining equipment. A reference architecture for remote control application system of mining equipment based on 5G is constructed using the research method of information physics system architecture. Taking 5G+coal mining machine remote control as an example, the key technologies of 5G transmission link are studied. The information flow between monitoring data and remote control data is sorted out. The current 5G network adopts a layer three communication method, and point-to-point layer two communication is required between the control system of remote control of mining equipment and the controlled equipment. In order to solve this problem, a layer two tunnel construction method and 5G LAN technology have been studied, and a stable channel for remote control information transmission has been established. In order to address the high bandwidth transmission requirements of on-site monitoring data and the low latency transmission requirements of remote control data, a flexible and adaptable over the air bandwidth allocation mechanism for resource pre-scheduling and request scheduling is proposed. The on-site test results show that a total of 13 328 data packets are transmitted through the layer two tunnel, without any packet loss or unsuccessful reception. The end-to-end delay is 11.5-23.8 ms, which can meet the transmission requirements of remote control of mining equipment. The RSRP(reference signal receiving power) distribution is between −93 dB·m and −53 dB·m, and the SINR(signal to interference plus noise ratio) distribution is between 10 dB and 38 dB, indicating good wireless coverage. The reliability, end-to-end delay, and wireless coverage of the mining 5G wireless communication system can meet the transmission requirements of remote control of shearers.

Keywords