Materials (Nov 2022)

Experimental Investigations into the Pyrolysis Mechanism and Composition of Ceramic Precursors Containing Boron and Nitrides with Different Boron Contents

  • Yiqiang Hong,
  • Guoxin Qu,
  • Youpei Du,
  • Tingting Yuan,
  • Shuangshuang Hao,
  • Wei Yang,
  • Zhen Dai,
  • Qingsong Ma

DOI
https://doi.org/10.3390/ma15238390
Journal volume & issue
Vol. 15, no. 23
p. 8390

Abstract

Read online

In this work, a novel ceramic precursor containing boron, silicon, and nitrides (named SiBCN) was synthesized from liquid ceramic precursors. Additionally, its pyrolysis, microstructure, and chemical composition were studied at 1600 °C. The results showed that the samples with different boron contents had similar structural composition, and both of the two precursors had stable amorphous SiBN structures at 1400 °C, which were mainly composed of B-N and Si-N and endowed them with excellent thermo-oxidative stability. With the progress of the heating process, the boron contents increased and the structures became more amorphous, significantly improving the thermal stability of the samples in high-temperature environments. However, during the moisture treatment, the introduction of more boron led to worse moisture stability.

Keywords