This paper aims to describe the capability of the system boric acid–boron oxide for thermochemical energy storage. As part of the systematic research and in-depth analysis of potential solid/gas reaction systems, performed during the last years, this reaction system appears to be highly promising for the future of worldwide sustainable energy supply. The analysis of the reaction heat, by means of thermogravimetric and macroscopic investigations, not only showed a significantly higher energy density of 2.2 GJ/m3, compared to sensible- and latent energy storages, but the reaction kinetic further demonstrated the reactions’ suitability to store energy from renewable energy and waste heat sources. This paper, therefore, shows a new approach regarding the application of the boric acid–boron oxide reaction system and elaborates on the advantages and challenges for its use as energy storage.