Remote Sensing (Nov 2015)

Evaluation of Satellite and Reanalysis Soil Moisture Products over Southwest China Using Ground-Based Measurements

  • Jian Peng,
  • Jonathan Niesel,
  • Alexander Loew,
  • Shiqiang Zhang,
  • Jie Wang

DOI
https://doi.org/10.3390/rs71115729
Journal volume & issue
Vol. 7, no. 11
pp. 15729 – 15747

Abstract

Read online

Long-term global satellite and reanalysis soil moisture products have been available for several years. In this study, in situ soil moisture measurements from 2008 to 2012 over Southwest China are used to evaluate the accuracy of four satellite-based products and one reanalysis soil moisture product. These products are the Advanced Microwave Scanning Radiometer for the Earth observing system (AMSR-E), the Advanced Scatterometer (ASCAT), the Soil Moisture and Ocean Salinity (SMOS), the European Space Agency’s Climate Change Initiative soil moisture (CCI SM), and the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim). The evaluation of soil moisture absolute values and anomalies shows that all the products can capture the temporal dynamics of in situ soil moisture well. For AMSR-E and SMOS, larger errors occur, which are likely due to the severe effects of radio frequency interference (RFI) over the test region. In general, the ERA-Interim (R = 0.782, ubRMSD = 0.035 m3/m3) and CCI SM (R = 0.723, ubRMSD = 0.046 m3/m3) perform the best compared to the other products. The accuracy levels obtained are comparable to validation results from other regions. Therefore, local hydrological applications and water resource management will benefit from the long-term ERA-Interim and CCI SM soil moisture products.

Keywords