Towards Precision Muonic X-ray Measurements of Charge Radii of Light Nuclei
Ben Ohayon,
Andreas Abeln,
Silvia Bara,
Thomas Elias Cocolios,
Ofir Eizenberg,
Andreas Fleischmann,
Loredana Gastaldo,
César Godinho,
Michael Heines,
Daniel Hengstler,
Guillaume Hupin,
Paul Indelicato,
Klaus Kirch,
Andreas Knecht,
Daniel Kreuzberger,
Jorge Machado,
Petr Navratil,
Nancy Paul,
Randolf Pohl,
Daniel Unger,
Stergiani Marina Vogiatzi,
Katharina von Schoeler,
Frederik Wauters
Affiliations
Ben Ohayon
Physics Department, Technion—Israel Institute of Technology, Haifa 3200003, Israel
Andreas Abeln
Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Silvia Bara
Katholieke Universiteit (KU) Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
Thomas Elias Cocolios
Katholieke Universiteit (KU) Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
Ofir Eizenberg
Physics Department, Technion—Israel Institute of Technology, Haifa 3200003, Israel
Andreas Fleischmann
Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Loredana Gastaldo
Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
César Godinho
Departamento de Física da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2892-516 Caparica, Portugal
Michael Heines
Katholieke Universiteit (KU) Leuven, Instituut voor Kern- en Stralingsfysica, 3001 Leuven, Belgium
Daniel Hengstler
Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Guillaume Hupin
Le Laboratoire de Physique des Deux Infinis Irène Joliot-Curie (IJCLab), Centre National de la Recherche Scientifique/Institut National de Physique Nucléaire et de Physique des Particules (CNRS/IN2P3), Université Paris-Saclay, 91405 Orsay, France
Paul Indelicato
Laboratoire Kastler Brossel, Sorbonne Université, CNRS, L’École-Normale Supérieure, Paris Sciences et Lettres (ENS-PSL) Research University, Collège de France, Case 74, 4, Place Jussieu, 75005 Paris, France
Klaus Kirch
Institute for Particle Physics and Astrophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
Andreas Knecht
Paul Scherrer Institute, 5232 Villigen, Switzerland
Daniel Kreuzberger
Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Jorge Machado
Departamento de Física da Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte da Caparica, 2892-516 Caparica, Portugal
Petr Navratil
TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
Nancy Paul
Laboratoire Kastler Brossel, Sorbonne Université, CNRS, L’École-Normale Supérieure, Paris Sciences et Lettres (ENS-PSL) Research University, Collège de France, Case 74, 4, Place Jussieu, 75005 Paris, France
Randolf Pohl
PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
Daniel Unger
Kirchhoff Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
Stergiani Marina Vogiatzi
Paul Scherrer Institute, 5232 Villigen, Switzerland
Katharina von Schoeler
Institute for Particle Physics and Astrophysics, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
Frederik Wauters
PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
We, the QUARTET Collaboration, propose an experiment to measure the nuclear charge radii of light elements with up to 20 times higher accuracy. These are essential both for understanding nuclear physics at low energies, and for experimental and theoretical applications in simple atomic systems. Such comparisons advance the understanding of bound-state quantum electrodynamics and are useful for searching for new physics beyond the Standard Model. The energy levels of muonic atoms are highly susceptible to nuclear structure, especially to the mean square charge radius. The radii of the lightest nuclei (with the atomic number, Z=1,2) have been determined with high accuracy using laser spectroscopy in muonic atoms, while those of medium mass and above were determined using X-ray spectroscopy with semiconductor detectors. In this communication, we present a new experiment, aiming to obtain precision measurements of the radii of light nuclei 3≤Z≤10 using single-photon energy measurements with cryogenic microcalorimeters; a quantum-sensing technology capable of high efficiency with outstanding resolution for low-energy X-rays.