Scientific Reports (Apr 2024)
Employing supervised machine learning algorithms for classification and prediction of anemia among youth girls in Ethiopia
Abstract
Abstract In developing countries, one-quarter of young women have suffered from anemia. However, the available studies in Ethiopia have been usually used the traditional stastical methods. Therefore, this study aimed to employ multiple machine learning algorithms to identify the most effective model for the prediction of anemia among youth girls in Ethiopia. A total of 5642 weighted samples of young girls from the 2016 Ethiopian Demographic and Health Survey dataset were utilized. The data underwent preprocessing, with 80% of the observations used for training the model and 20% for testing. Eight machine learning algorithms were employed to build and compare models. The model performance was assessed using evaluation metrics in Python software. Various data balancing techniques were applied, and the Boruta algorithm was used to select the most relevant features. Besides, association rule mining was conducted using the Apriori algorithm in R software. The random forest classifier with an AUC value of 82% outperformed in predicting anemia among all the tested classifiers. Region, poor wealth index, no formal education, unimproved toilet facility, rural residence, not used contraceptive method, religion, age, no media exposure, occupation, and having more than 5 family size were the top attributes to predict anemia. Association rule mining was identified the top seven best rules that most frequently associated with anemia. The random forest classifier is the best for predicting anemia. Therefore, making it potentially valuable as decision-support tools for the relevant stakeholders and giving emphasis for the identified predictors could be an important intervention to halt anemia among youth girls.