PLoS ONE (Jan 2011)

Deep sequencing whole transcriptome exploration of the σE regulon in Neisseria meningitidis.

  • Robert Antonius Gerhardus Huis in 't Veld,
  • Antonius Marcellinus Willemsen,
  • Antonius Hubertus Cornelis van Kampen,
  • Edward John Bradley,
  • Frank Baas,
  • Yvonne Pannekoek,
  • Arie van der Ende

DOI
https://doi.org/10.1371/journal.pone.0029002
Journal volume & issue
Vol. 6, no. 12
p. e29002

Abstract

Read online

Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ(70)-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σ(E) regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σ(E) regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σ(E) is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σ(E) operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σ(E) dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides.