Reconfigurable intelligent surfaces (RISs) have the potential to improve wireless communication links by dynamically redirecting signals to dead spots. Although a reconfigurable surface is best suited for environments in which the reflected signal must be dynamically steered, there are cases where a static, non-reconfigurable anomalous reflective metasurface can suffice. In this work, spray-coated liquid metal is used to rapidly prototype an anomalous reflective metasurface. Using a pressurized air gun and a plastic thin-film mask, a metasurface consisting of a 6 × 4 array of Galinstan liquid–metal elements is sprayed within minutes. The metasurface produces a reflected wave at an angle of 28° from normal in response to a normal incident 3.5-GHz electromagnetic plane wave. The spray-coated liquid–metal metasurface shows comparable results to an anomalous reflective metasurface with copper elements of the same dimensions, demonstrating that this liquid–metal fabrication process is a viable solution for the rapid prototyping of anomalous reflective metasurfaces.