Chinese Journal of Mechanical Engineering (Jun 2022)

Lane-Exchanging Driving Strategy for Autonomous Vehicle via Trajectory Prediction and Model Predictive Control

  • Yimin Chen,
  • Huilong Yu,
  • Jinwei Zhang,
  • Dongpu Cao

DOI
https://doi.org/10.1186/s10033-022-00748-7
Journal volume & issue
Vol. 35, no. 1
pp. 1 – 12

Abstract

Read online

Abstract The cooperation between an autonomous vehicle and a nearby vehicle is critical to ensure driving safety in the lane-exchanging scenario. The nearby vehicle trajectory needs to be predicted, from which the autonomous vehicle is controlled to prevent possible collisions. This paper proposes a lane-exchanging driving strategy for the autonomous vehicle to cooperate with the nearby vehicle by integrating vehicle trajectory prediction and motion control. A trajectory prediction method is developed to anticipate the nearby vehicle trajectory. The Gaussian mixture model (GMM), together with the vehicle kinematic model, are synthesized to predict the nearby vehicle trajectory. A potential-field-based model predictive control (MPC) approach is utilized by the autonomous vehicle to conduct the lane-exchanging maneuver. The potential field of the nearby vehicle is considered in the controller design for collision avoidance. On-road driving data verification shows that the nearby vehicle trajectory can be predicted by the proposed method. CarSim® simulations validate that the autonomous vehicle can perform the lane-exchanging maneuver and avoid the nearby vehicle using the proposed driving strategy. The autonomous vehicle can thus safely perform the lane-exchanging maneuver and avoid the nearby vehicle.

Keywords