HortTechnology (Nov 2023)

Site Factors Related to Dry Farm Vegetable Productivity and Quality in the Willamette Valley of Oregon

  • Matthew Davis,
  • Alexandra Stone,
  • Andy Gallagher,
  • Amy Garrett

DOI
https://doi.org/10.21273/HORTTECH05287-23
Journal volume & issue
Vol. 33, no. 6

Abstract

Read online

Dry farming has been defined as rainfed crop production in a climate with more than 20 inches of annual precipitation, but where most precipitation falls outside the growing season. Dry farming is garnering interest in the western United States because it allows farmers to produce crops despite a lack of access to irrigation or water rights or to eliminate the infrastructure, labor, and energy costs of irrigation systems. Sites have differing suitability for dry farming, and some sites that can be farmed with irrigation will perform poorly when dry-farmed. To determine site factors associated with dry farm yield and fruit quality, trials of ‘Early Girl’ tomato (Solanum lycopersicum) and ‘North Georgia Candy Roaster’ winter squash (Cucurbita maxima) were conducted at 17 participant farms in the Willamette Valley in Oregon, USA, in 2018 and 2019. The mean blossom-end rot (BER) incidence was higher in the Willamette Valley than in coastal California; this was probably because of the Willamette Valley’s hotter and drier climate. Increasing the available water-holding capacity of soil, total available water (available water-holding capacity of the soil plus in-season rainfall), native productivity rating, soil pH (0–6 inches and 24–36 inches), soil nutrient concentrations (0–6 inches and 24–36 inches), and in-season rainfall were positively associated with at least one measure of tomato or winter squash yield, fruit number, or average fruit weight. An earlier planting date was positively associated with winter squash total yield and total fruit number in 2019. The water-limited yield potential (the total yield potential if water was the only limiting factor) for 20-ft2/plant plots was estimated to be 2.2 tons/acre per inch for tomato and 2.8 tons/acre per inch for winter squash. In 2019, high-density plantings (20 ft2/plant) had higher tomato and winter squash mean total yields, mean total fruit numbers, and mean tomato unblemished yield than low-density plantings (40 ft2/plant). In 2019, planting tomato at 20 ft2/plant decreased the mean BER incidence by 15.6% when compared with planting tomato at 40 ft2/plant.

Keywords