PeerJ (May 2022)

Comparative proteomic analysis between mature and germinating seeds in Paris polyphylla var. yunnanensis

  • Li-Zhen Ling,
  • Shu-Dong Zhang

DOI
https://doi.org/10.7717/peerj.13304
Journal volume & issue
Vol. 10
p. e13304

Abstract

Read online Read online

The long dormancy period of Paris polyphylla var. yunnanensis seeds affects the supply of this scarce plant, which is used as an important traditional Chinese medicine. Mature seeds with a globular embryo and germinating seeds with developed embryo were used to explore the mechanisms of seed germination in this species. The protein profiles between the mature and germinating seeds were compared using the isobaric tags for relative and absolute quantification (iTRAQ) approach. Of the 4,488 proteins identified, a total of 1,305 differentially expressed proteins (DEPs) were detected. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEPs indicated that metabolic pathways and the biosynthesis of secondary metabolites were the two top pathways. Additionally, phytohormone quantification shows that the abscisic acid (ABA) level significantly decreased, whereas the GA3 level dramatically increased among nine endogenous gibberellins (GAs), resulting in a significant increase of the GA3/ABA ratio in germinating seeds. The biosynthesis pathways of carotenoid as a precursor for ABA production and GA were further analyzed, and showed that proteinic expressions of the candidate genes in the two pathways did not correlate with the transcriptional abundances. However, 9-cis-epoxycarotenoid dioxygenase (NCED), a rate limited enzyme for ABA biosynthesis, was significantly decreased in mRNA levels in germinating seeds. By contrast, gibberellin 20-oxidase (GA20ox), a key enzyme GA biosynthesis, exhibited the major increase in one copy and a slight decrease in three others at the protentional level in germinating seeds. Gibberellin 2-oxidase (GA2ox), an inactivate enzyme in bioactive GAs, has the tendency to down-regulate in mRNA or at the proteinic level in germinating seeds. Altogether, these results suggested that the analyses of ABA and GA levels, the GA3/ABA ratio, and the expressional patterns of their regulatory genes may provide a novel mechanistic understanding of how phytohormones regulate seed germination in P. polyphylla var. yunnanensis.

Keywords