AMB Express (May 2018)
Rapid monitoring of the target protein expression with a fluorescent signal based on a dicistronic construct in Escherichia coli
Abstract
Abstract Real-time quantification of recombinant proteins is important in studies on fermentation engineering, cell engineering, etc. Measurement of the expression level of heterologous proteins in bacterial fermentation broth has traditionally relied on time-consuming and labor-intensive procedures, such as polyacrylamide gel electrophoresis, immunoblot analysis, and biological activity assays. We describe a simple, fast, and high sensitive assay for detecting heterologous proteins production in bacteria either at the overall level (fluorescence spectrophotometry) or at the individual level (fluorescence microscopic image) in this study. Based on a dicistronic model, the translation of target gene in the upstream open reading frame (ORF) was coupled with the synthesis of the mCherry reporter in the downstream ORF in E. coli cells, and subsequently this demonstrated a positive correlation between the expression of target gene and mCherry. Although a time lag exists between the expression of target protein and mCherry reporter, the method described here allows facile monitoring of dynamic changes in target protein expression, relying on indirect determination of the fluorescence intensity of mCherry during fermentation in real-time models. Additionally, the performance of a single bacterial cell factory could be checked under the fluorescence microscope field.
Keywords