Applied Sciences (Jan 2024)
A Parallel Privacy-Preserving k-Means Clustering Algorithm for Encrypted Databases in Cloud Computing
Abstract
With the development of cloud computing, interest in database outsourcing has recently increased. However, when the database is outsourced, there is a problem in that the information of the data owner is exposed to internal and external attackers. Therefore, in this paper, we propose decimal-based encryption operation protocols that support privacy preservation. The proposed protocols improve the operational efficiency compared with binary-based encryption operation protocols by eliminating the need for repetitive operations based on bit length. In addition, we propose a privacy-preserving k-means clustering algorithm using decimal-based encryption operation protocols. The proposed k-means clustering algorithm utilizes efficient decimal-based protocols that enhance the efficiency of the encryption operations. To provide high query processing performance, we also propose a parallel k-means clustering algorithm that supports thread-based parallel processing by using a random value pool. Meanwhile, a security analysis of both the proposed k-means clustering algorithm and the proposed parallel algorithm was performed to prove their data protection, query protection, and access pattern protection capabilities. Through our performance analysis, the proposed k-means clustering algorithm shows about 10~13 times better performance compared with the existing algorithms.
Keywords