Heliyon (Mar 2024)
Grid-based climate variability analysis of Addis Ababa, Ethiopia
Abstract
Climate change is an intricate global environmental concern. However, its impact is more pervasive in developing nations such as Ethiopia. Hence, this manuscript examines temperature variability and the magnitude of change over 38 years in the specific case of Addis Ababa, Ethiopia. Gridded meteorological data consisting of minimum and maximum temperatures on a monthly time scale ranging from 1981 to 2018 was obtained from the National Meteorological Agency of Ethiopia. The coefficient of variation (CV) and standardized anomaly index (SAI) were used to examine the rate and extent of temperature anomalies. Geostatistical models, particularly ordinary kriging, are presented as a means of spatially interpolating temperature data. Modified Mann-Kendall test (MMK), Sen's Slope (SS) estimator, principal component analysis (PCA), and T-test were employed to determine the monthly, annual, and seasonal trends using Geospatial technologies, “R” programming, and statistical software. The findings revealed substantial spatial and temporal variation in Addis Ababa’s annual and seasonal maximum and minimum temperatures. The long-term mean annual maximum and minimum temperatures were 25.8 °C and 12.6 °C, respectively. The monthly, annual, and seasonal temperatures accrued significantly except in the months of January and September. It is noteworthy that the decadal maximum temperature has risen by 2.7 °C, while minimum temperatures have displayed comparatively minor fluctuations. Moreover, the findings also exhibited that the average maximum and minimum temperatures increased by 1.88 °C and 1.72 °C, correspondingly and the highest temperature occurred during the spring (Belg) season. The first two PCAs (Annual and Kiremt Tmax) account for 90% of the temperature variation. In conclusion, the findings underscore the pressing need for the implementation of climate adaptation strategies and policy measures, which can strengthen the city’s resilience to imminent climate change-induced hazards. The mounting temperature presents substantial challenges across various sectors within the city, emphasizing the urgency of preemptive actions to mitigate potential repercussions.