Nature Communications (Jan 2023)

Next-Generation Morphometry for pathomics-data mining in histopathology

  • David L. Hölscher,
  • Nassim Bouteldja,
  • Mehdi Joodaki,
  • Maria L. Russo,
  • Yu-Chia Lan,
  • Alireza Vafaei Sadr,
  • Mingbo Cheng,
  • Vladimir Tesar,
  • Saskia V. Stillfried,
  • Barbara M. Klinkhammer,
  • Jonathan Barratt,
  • Jürgen Floege,
  • Ian S. D. Roberts,
  • Rosanna Coppo,
  • Ivan G. Costa,
  • Roman D. Bülow,
  • Peter Boor

DOI
https://doi.org/10.1038/s41467-023-36173-0
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Pathology diagnostics still rely on tissue morphology assessment by trained experts. Here, the authors perform deep-learning-based segmentation followed by large-scale feature extraction of histological images, i.e., next-generation morphometry, to enable outcome-relevant and disease-specific pathomics analysis of non-tumor kidney pathology.