Scientific Reports (Jul 2024)

DUSP1 and SOX2 expression determine squamous cell carcinoma of the salivary gland progression

  • Lucía Acero-Riaguas,
  • Ana Belén Griso-Acevedo,
  • Alejandro SanLorenzo-Vaquero,
  • Blanca Ibáñez-Herrera,
  • Sara María Fernandez-Diaz,
  • Marta Mascaraque,
  • Rocío Sánchez-Siles,
  • Iván López-García,
  • Carlos Benítez-Buelga,
  • Elena Ruiz Bravo-Burguillos,
  • Beatriz Castelo,
  • José Luis Cebrián-Carretero,
  • Rosario Perona,
  • Leandro Sastre,
  • Ana Sastre-Perona

DOI
https://doi.org/10.1038/s41598-024-65945-x
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Salivary gland squamous cell carcinomas (SG-SCCs) constitute a rare type of head and neck cancer which is linked to poor prognosis. Due to their low frequency, the molecular mechanisms responsible for their aggressiveness are poorly understood. In this work we studied the role of the phosphatase DUSP1, a negative regulator of MAPK activity, in controlling SG-SCC progression. We generated DUSP1 KO clones in A253 human cells. These clones showed a reduced ability to grow in 2D, self-renew in ECM matrices and to form tumors in immunodeficient mice. This was caused by an overactivation of the stress and apoptosis kinase JNK1/2 in DUSP1 −/+ clones. Interestingly, RNAseq analysis revealed that the expression of SOX2, a well-known self-renewal gene was decreased at the mRNA and protein levels in DUSP1 −/+ cells. Unexpectedly, CRISPR-KO of SOX2 did not recapitulate DUSP1 −/+ phenotype, and SOX2-null cells had an enhanced ability to self-renew and to form tumors in mice. Gene expression analysis demonstrated that SOX2-null cells have a decreased squamous differentiation profile -losing TP63 expression- and an increased migratory phenotype, with an enhanced epithelial to mesenchymal transition signature. In summary, our data indicates that DUSP1 and SOX2 have opposite functions in SG-SCC, being DUSP1 necessary for tumor growth and SOX2 dispensable showing a tumor suppressor function. Our data suggest that the combined expression of SOX2 and DUSP1 could be a useful biomarker to predict progression in patients with SG-SCCs.