Pharmaceutics (May 2024)
An Investigation into the Effects of Processing Factors on the Properties and Scaling-Up Potential of Propranolol-Loaded Chitosan Nanogels
Abstract
Chitosan-triphosphate (TPP) nanogels are widely studied drug delivery carrier systems, typically prepared via a simple mixing process. However, the effects of the processing factors on nanogel production have not been extensively explored, despite the importance of understanding and standardising such factors to allow upscaling and commercial usage. This study aims to systematically evaluate the effects of various fabrication and processing factors on the properties of nanogels using a Design of Experiment approach. Hydrodynamic size, polydispersity index (PDI), zeta potential, and encapsulation efficiency were determined as the dependent factors. The temperature, stirring rate, chitosan grade, crosslinker choice, and the interaction term between temperature and chitosan grade were found to have a significant effect on the particle size, whereas the effect of temperature and the addition rate of crosslinker on the PDI was also noteworthy. Moreover, the addition rate of the crosslinker and the volume of the reaction vessel were found to impact the encapsulation efficiency. The zeta potential of the nanogels was found to be governed by the chitosan grade. The optimal fabrication conditions for the development of medium molecular weight chitosan and TPP nanogels included the following: the addition rate for TPP solution was set at 2 mL/min, while the solution was then stirred at a temperature of 50 °C and a stirring speed of 600 rpm. The volume of the glass vial used was 28 mL, while the stirrer size was 20 mm. The second aim of the study was to evaluate the potential for scaling up the nanogels. Size and PDI were found to increase from 128 nm to 151 nm and from 0.232 to 0.267, respectively, when the volume of the reaction mixture was increased from 4 to 20 mL and other processing factors were kept unchanged. These results indicate that caution is required when scaling up as the nanogel properties may be significantly altered with an increasing production scale.
Keywords