Journal of Geodesy and Geoinformation Science (Sep 2022)

Network SpaceTime AI: Concepts, Methods and Applications

  • Tao CHENG,Yang ZHANG,James HAWORTH

DOI
https://doi.org/10.11947/j.JGGS.2022.0309
Journal volume & issue
Vol. 5, no. 3
pp. 78 – 92

Abstract

Read online

SpacetimeAI and GeoAI are currently hot topics, applying the latest algorithms in computer science, such as deep learning, to spatiotemporal data. Although deep learning algorithms have been successfully applied to raster data due to their natural applicability to image processing, their applications in other spatial and space-time data types are still immature. This paper sets up the proposition of using a network (&graph)-based framework as a generic spatial structure to present space-time processes that are usually represented by the points, polylines, and polygons. We illustrate network and graph-based SpaceTimeAI, from graph-based deep learning for prediction, to space-time clustering and optimisation. These applications demonstrate the advantages of network (graph)-based SpacetimeAI in the fields of transport&mobility, crime&policing, and public health.

Keywords