E3S Web of Conferences (Jan 2024)
Photocatalytic conversion of carbon dioxide to methanol over different precursors of graphitic carbon nitride supported on fibrous silica iron
Abstract
In this study, the graphitic carbon nitride (g-C3N4) was successfully synthesized through thermal polymerization under three different g-C3N4 precursors such as urea (U-gC3N4), melamine (M-gC3N4) and dicyandiamide (D-gC3N4) and then doped into the fibrous silica iron (FSFe), denoted as U-gC3N4/FSFe, MgC3N4/FSFe, and D-gC3N4/FSFe, respectively. The synthesized catalysts were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectrometer (FTIR), and UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis/DRS) and also tested for photocatalytic conversion of carbon dioxide (CO2) to methanol (CH3OH). The study indicated that altering the precursors had a substantial impact on the physicochemical features of the FSFe, which in turn increased the catalytic performance of the conversion of CO2 to CH3OH. U-gC3N4/FSFe exhibits the highest CH3OH yield (2.3 x 104 µmol gcat−1) compared to bare FSFe, D-gC3N4/FSFe and M-gC3N4/FSFe under visible light irradiation within 240 min. The higher CH3OH yield over U-gC3N4/FSFe is mostly owing to the lower bandgap energy of U-gC3N4/FSFe, as well as the advantageous interaction between g-C3N4 and FSFe.