Microorganisms (Oct 2024)

The Catalog of Microbial Genes and Metagenome-Assembled Genomes from the Gut Microbiomes of Five Typical Crow Species on the Qinghai–Tibetan Plateau

  • Boyu Tang,
  • You Wang,
  • Yonggang Dong,
  • Quanchao Cui,
  • Zhanhao Zeng,
  • Shunfu He,
  • Wenxin Zhao,
  • Zhuoma Lancuo,
  • Shaobin Li,
  • Wen Wang

DOI
https://doi.org/10.3390/microorganisms12102033
Journal volume & issue
Vol. 12, no. 10
p. 2033

Abstract

Read online

While considerable progress has been made in understanding the complex relationships between gut microbiomes and their hosts, especially in mammals and humans, the functions of these microbial communities in avian species remain largely unexplored. This gap in knowledge is particularly notable, given the critical roles gut microbiomes are known to play in facilitating crucial physiological functions, such as digestion, nutrient absorption, and immune system development. Corvidae birds are omnivorous and widely distributed across various habitats, exhibiting strong adaptability and often displaying the traits of accompanying humans. However, to date, information on species composition, sequenced genomes, and functional characteristics of crow gut microbes is lacking. Herein, we constructed the first relatively comprehensive crows gut microbial gene catalog (2.74 million genes) and 195 high-quality and medium-quality metagenome-assembled genomes using 53 metagenomic samples from five typical crow species (Pyrrhocorax pyrrhocorax, Corvus dauuricus, Corvus frugilegus, Corvus macrorhynchos, and Corvus corax) on the Qinghai–Tibetan Plateau. The species composition of gut microbiota at the phylum and genus levels was revealed for these five crow species. Simultaneously, numerous types of prevalent pathogenic bacteria were identified, indicating the potential of these crows to transmit diseases within the local community. At the functional level, we annotated a total of 356 KEGG functional pathways, six CAZyme categories, and 3607 virulence factor genes in the gut microbiomes of the crows. The gut microbiota of five distinct crow species underwent a comparative analysis, which uncovered significant differences in their composition, diversity, and functional structures. Over 36% of MAGs showed no overlap with existing databases, suggesting they might represent new species. Consequently, these findings enriched the dataset of microbial genomes associated with crows’ digestive systems. Overall, this study offers crucial baseline information regarding the gut microbial gene catalog and genomes in crows, potentially aiding microbiome-based research, as well as an evaluation of the health risks to humans from the bacterial pathogens transmitted by wild birds.

Keywords