Foods (Nov 2022)
Application of Imaging and Artificial Intelligence for Quality Monitoring of Stored Black Currant (<i>Ribes nigrum</i> L.)
Abstract
The objective of this study was to assess the influence of storage under different storage conditions on black currant quality in a non-destructive and inexpensive manner using image processing and artificial intelligence. Black currants were stored at a room temperature of 20 ± 1 °C and a temperature of 3 °C (refrigerator). The images of black currants directly after harvest and fruit stored for one and two weeks were obtained using a digital camera. Then, texture parameters were computed from the images converted to color channels R (red), G (green), B (blue), L (lightness component from black to white), a (green for negative and red for positive values), b (blue for negative and yellow for positive values), X (component with color information), Y (lightness), and Z (component with color information). Models for the classification of black currants were built using various machine learning algorithms based on selected textures for RGB, Lab, and XYZ color spaces. Models built using the IBk, multilayer perceptron, and multiclass classifier for textures from RGB color space, and the IBk algorithm for textures from Lab color space distinguished unstored black currants and samples stored in the room for one and two weeks with an average accuracy of 100%, and the kappa statistic and weighted averages of precision, recall, Matthews correlation coefficient (MCC), receiver operating characteristic (ROC) area, and precision–recall (PRC) area equal to 1.000. This indicated a very distinct change in the external structure of the fruit after the first week and more and more visible changes in quality with increasing storage time. A classification accuracy reaching 98.67% (multilayer perceptron, Lab color space) for the samples stored in the refrigerator may indicate smaller quality changes caused by storage at a low temperature. The approach combining image textures and artificial intelligence turned out to be promising to monitor the quality changes in black currants during storage.
Keywords