NPG Asia Materials (Jan 2024)

The central role of tilted anisotropy for field-free spin–orbit torque switching of perpendicular magnetization

  • Chen-Yu Hu,
  • Wei-De Chen,
  • Yan-Ting Liu,
  • Chao-Chung Huang,
  • Chi-Feng Pai

DOI
https://doi.org/10.1038/s41427-023-00521-9
Journal volume & issue
Vol. 16, no. 1
pp. 1 – 10

Abstract

Read online

Abstract The discovery of efficient magnetization switching upon device activation by spin Hall effect (SHE)-induced spin–orbit torque (SOT) changed the course of magnetic random-access memory (MRAM) research and development. However, for electronic systems with perpendicular magnetic anisotropy (PMA), the use of SOT is still hampered by the necessity of a longitudinal magnetic field to break magnetic symmetry and achieve deterministic switching. In this work, we demonstrate that robust and tunable field-free current-driven SOT switching of perpendicular magnetization can be controlled by the growth protocol in Pt-based magnetic heterostructures. We further elucidate that such growth-dependent symmetry breaking originates from the laterally tilted magnetic anisotropy of the ferromagnetic layer with PMA, a phenomenon that has been largely neglected in previous studies. We show experimentally and in simulation that in a PMA system with tilted anisotropy, the deterministic field-free switching exhibits a conventional SHE-induced damping-like torque feature, and the resulting current-induced effective field shows a nonlinear dependence on the applied current density. This relationship could be potentially misattributed to an unconventional SOT origin.