Applied Sciences (Jan 2023)
Short-Term Power Prediction of Wind Turbine Applying Machine Learning and Digital Filter
Abstract
As wind energy development increases, accurate wind energy forecasting helps to develop sensible power generation plans and ensure a balance between supply and demand. Machine-learning-based forecasting models possess exceptional predictive capabilities, and data manipulation prior to model training is also a key focus of this research. This study trained a deep Long Short-Term Memory (LSTM) neural network to learn the processing results of the Savitzky-Golay filter, which can avoid overfitting due to fluctuations and noise in measurements, improving the generalization performance. The optimum data frame length to match the second-order filter was determined by comparison. In a single-step prediction, the method reduced the root-mean-square error by 3.8% compared to the model trained directly with the measurements. The method also produced the smallest errors in all steps of the multi-step advance prediction. The proposed method ensures the accuracy of the forecasting and, on that basis, also improves the timeliness of the effective forecasts.
Keywords