Pharmaceutics (May 2023)

Controlling the Evolution of Selective Vancomycin Resistance through Successful Ophthalmic Eye-Drop Preparation of Vancomycin-Loaded Nanoliposomes Using the Active-Loading Method

  • El Tahra M. Ahmed,
  • Mariam Hassan,
  • Rehab Nabil Shamma,
  • Amna Makky,
  • Doaa H. Hassan

DOI
https://doi.org/10.3390/pharmaceutics15061636
Journal volume & issue
Vol. 15, no. 6
p. 1636

Abstract

Read online

Vancomycin is the front-line defense and drug of choice for the most serious and life-threatening methicillin-resistant Staphylococcus aureus (MRSA) infections. However, poor vancomycin therapeutic practice limits its use, and there is a consequent rise of the threat of vancomycin resistance by complete loss of its antibacterial activity. Nanovesicles as a drug-delivery platform, with their featured capabilities of targeted delivery and cell penetration, are a promising strategy to resolve the shortcomings of vancomycin therapy. However, vancomycin’s physicochemical properties challenge its effective loading. In this study, we used the ammonium sulfate gradient method to enhance vancomycin loading into liposomes. Depending on the pH difference between the extraliposomal vancomycin–Tris buffer solution (pH 9) and the intraliposomal ammonium sulfate solution (pH 5–6), vancomycin was actively and successfully loaded into liposomes (up to 65% entrapment efficiency), while the liposomal size was maintained at 155 nm. Vancomycin-loaded nanoliposomes effectively enhanced the bactericidal effect of vancomycin; the minimum inhibitory concentration (MIC) value for MRSA decreased 4.6-fold. Furthermore, they effectively inhibited and killed heteroresistant vancomycin-intermediate S.aureous (h-VISA) with an MIC of 0.338 μg mL−1. Moreover, MRSA could not develop resistance against vancomycin that was loaded into and delivered by liposomes. Vancomycin-loaded nanoliposomes could be a feasible solution for enhancing vancomycin’s therapeutic use and controlling the emerging vancomycin resistance.

Keywords