Advances in Condensed Matter Physics (Jan 2013)

History-Dependent Patterns in Randomly Perturbed Nematic Liquid Crystals

  • A. Ranjkesh,
  • M. Ambrožič,
  • G. Cordoyiannis,
  • Z. Kutnjak,
  • S. Kralj

DOI
https://doi.org/10.1155/2013/505219
Journal volume & issue
Vol. 2013

Abstract

Read online

We study the characteristics of nematic structures in a randomly perturbed nematic liquid crystal (LC) phase. We focus on the impact of the samples history on the universal behavior. The obtained results are of interest for every randomly perturbed system exhibiting a continuous symmetry-breaking phase transition. A semimicroscopic lattice simulation is used where the LC molecules are treated as cylindrically symmetric, rod-like objects interacting via a Lebwohl-Lasher (LL) interaction. Pure LC systems exhibit a first order phase transition into the orientationally ordered nematic phase at T=Tc on lowering the temperature T. The orientational ordering of LC molecules is perturbed by the quenched, randomly distributed rod-like impurities of concentration p. Their orientation is randomly distributed, and they are coupled with the LC molecules via an LL-type interaction. Only concentrations below the percolation threshold are considered. The key macroscopic characteristics of perturbed LC structures in the symmetry-broken nematic phase are analyzed for two qualitatively different histories at T≪Tc. We demonstrate that, for a weak enough interaction among the LC molecules and impurities, qualitatively different history-dependent states could be obtained. These states could exhibit either short-range, quasi-long-range, or even long-range order.