Remote Sensing (Aug 2021)

Retrieving Precipitable Water Vapor from Real-Time Precise Point Positioning Using VMF1/VMF3 Forecasting Products

  • Peng Sun,
  • Kefei Zhang,
  • Suqin Wu,
  • Moufeng Wan,
  • Yun Lin

DOI
https://doi.org/10.3390/rs13163245
Journal volume & issue
Vol. 13, no. 16
p. 3245

Abstract

Read online

Real-time precise point positioning (RT-PPP) has become a powerful technique for the determination of the zenith tropospheric delay (ZTD) over a GPS (global positioning system) or GNSS (global navigation satellite systems) station of interest, and the follow-on high-precision retrieval of precipitable water vapor (PWV). The a priori zenith hydrostatic delay (ZHD) and the mapping function used in the PPP approach are the two factors that could affect the accuracy of the PPP-based ZTD significantly. If the in situ atmospheric pressure is available, the Saastamoinen model can be used to determine ZHD values, and the model-predicted ZHD results are of high accuracy. However, not all GPS/GNSS are equipped with an in situ meteorological sensor. In this research, the daily forecasting ZHD and mapping function values from VMF1 forecasting (VMF1_FC) and VMF3 forecasting (VMF3_FC) products were used for the determination of the GPS-derived PWV. The a priori ZHDs derived from VMF1_FC and VMF3_FC were first evaluated by comparing against the reference ZHDs from globally distributed radiosonde stations. GPS observations from 41 IGS stations that have co-located radiosonde stations during the period of the first half of 2020 were used to test the quality of GPS-ZTD and GPS-PWV. Three sets of ZTDs estimated from RT-PPP solutions using the a priori ZHD and mapping function from the following three VMF products were evaluated: (1) VMF1_FC; (2) VMF3_FC (resolution 5° × 5°); (3) VMF3_FC (resolution 1° × 1°). The results showed that, when the ZHDs from 443 globally distributed radiosonde stations from 1 July 2018 to 30 June 2021 were used as the reference, the mean RMSEs of the ZHDs from the three VMF products were 5.9, 5.4, and 4.3 mm, respectively. The ZTDs estimated from RT-PPP at 41 selected IGS stations were compared with those from IGS, and the results showed that the mean RMSEs of the ZTDs of the 41 stations from the three PPP solutions were 8.6, 9.0, and 8.6 mm, respectively, and the mean RMSEs of the PWV converted from their corresponding ZWDs were 1.9, 2.4, and 1.7 mm, respectively, in comparison with the reference PWV from co-located radiosonde stations. The results suggest that the a priori ZHD and mapping function from VMF1_FC and VMF3_FC can be used for the precise determination of real-time GPS/GNSS-PWV in most regions, especially the VMF3_FC (resolution 1° × 1°) product.

Keywords