Applied Sciences (Jun 2021)

Polyphenol Rich Sugarcane Extract Reduces Body Weight in C57/BL6J Mice Fed a High Fat, High Carbohydrate Diet

  • Matthew Flavel,
  • Timothy P. Ellis,
  • Lauren Stahl,
  • Denovan Begg,
  • Jason Smythe,
  • Leodevico L. Ilag,
  • Richard S. Weisinger,
  • Barry Kitchen,
  • Markandeya Jois

DOI
https://doi.org/10.3390/app11115163
Journal volume & issue
Vol. 11, no. 11
p. 5163

Abstract

Read online

Background: Energy-dense diets have been implicated as a driving force in the global obesity crisis. Sucrose derived from sugar cane (Saccharum officinarum) is a carbohydrate source at the centre of this discussion. However, sugar cane is a complex plant containing a wide variety of phytochemicals that may have anti-obesity properties. The objective of this study was to assess if polyphenols extracted from sugar cane were capable of mitigating the progression of diet-induced obesity. Methods: Forty-five male, six-week-old C57BL/6J mice were divided into groups of 15 and fed a high-fat, high-carbohydrate diet supplemented with 0%, 2% or 4% polyphenol-rich sugarcane extract (PRSE) for twelve weeks. Body weight, food intake, water intake and faecal content were measured in addition to dual energy x-ray absorptiometry (DEXA) of the mice. Gene expression was also assessed for a range of key metabolic pathways in both blood and tissue samples in order to determine PRSE’s potential mechanisms of action. Data was analysed using ANOVA and post-hoc statistical methods. Results: Mice fed 4% PRSE were found to have a significantly lower overall bodyweight and adipose tissue accumulation compared to control (0%). This finding was supported by a reduced plasma leptin concentration and an increased excretion of carbohydrates. Upregulated gene transcriptions of adiponectin, PPARγ, PPARα, UCP2 and fatty acid synthase mRNAs were also observed. Conclusions: These results indicate that reduced carbohydrate absorption is the primary mechanism leading to the reduction of body weight in mice fed a high-fat, high-carbohydrate diet. This is predominately supported by the detection of increased carbohydrate concentration in the faeces of mice that lost weight. Other potential mechanisms, such as feed intake and energy expenditure, did not show significant differences between groups and are less likely to be involved.

Keywords