Prediction of Body Weight by Using PCA-Supported Gradient Boosting and Random Forest Algorithms in Water Buffaloes (<i>Bubalus bubalis</i>) Reared in South-Eastern Mexico
Armando Gomez-Vazquez,
Cem Tırınk,
Alvar Alonzo Cruz-Tamayo,
Aldenamar Cruz-Hernandez,
Enrique Camacho-Pérez,
İbrahim Cihangir Okuyucu,
Hasan Alp Şahin,
Dany Alejandro Dzib-Cauich,
Ömer Gülboy,
Ricardo Alfonso Garcia-Herrera,
Alfonso J. Chay-Canul
Affiliations
Armando Gomez-Vazquez
División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa C.P. 86280, Tabasco, Mexico
Cem Tırınk
Department of Animal Science, Faculty of Agriculture, Igdir University, TR76000 Igdir, Turkey
Alvar Alonzo Cruz-Tamayo
Facultad de Ciencias Agropecuarias, Universidad Autónoma de Campeche, Escárcega C.P. 24350, Campeche, Mexico
Aldenamar Cruz-Hernandez
División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa C.P. 86280, Tabasco, Mexico
Enrique Camacho-Pérez
Facultad de Ingeniería, Universidad Autónoma de Yucatán, Av. Industrias No Contaminantes s/n, Mérida C.P. 97302, Yucatán, Mexico
İbrahim Cihangir Okuyucu
Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, TR55139 Samsun, Turkey
Hasan Alp Şahin
Research Institute of Hemp, Ondokuz Mayis University, TR55139 Samsun, Turkey
Dany Alejandro Dzib-Cauich
Tecnológico Nacional de México, Instituto Tecnológico Superior de Calkiní, Av. Ah-Canul, Calkiní C.P. 24900, Campeche, Mexico
Ömer Gülboy
Department of Animal Science, Faculty of Agriculture, Ondokuz Mayis University, TR55139 Samsun, Turkey
Ricardo Alfonso Garcia-Herrera
División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa C.P. 86280, Tabasco, Mexico
Alfonso J. Chay-Canul
División Académica de Ciencias Agropecuarias, Universidad Juárez Autónoma de Tabasco, Villahermosa C.P. 86280, Tabasco, Mexico
This study aims to use advanced machine learning techniques supported by Principal Component Analysis (PCA) to estimate body weight (BW) in buffalos raised in southeastern Mexico and compare their performance. The first stage of the current study consists of body measurements and the process of determining the most informative variables using PCA, a dimension reduction method. This process reduces the data size by eliminating the complex structure of the model and provides a faster and more effective learning process. As a second stage, two separate prediction models were developed with Gradient Boosting and Random Forest algorithms, using the principal components obtained from the data set reduced by PCA. The performances of both models were compared using R2, RMSE and MAE metrics, and showed that the Gradient Boosting model achieved a better prediction performance with a higher R2 value and lower error rates than the Random Forest model. In conclusion, PCA-supported modeling applications can provide more reliable results, and the Gradient Boosting algorithm is superior to Random Forest in this context. The current study demonstrates the potential use of machine learning approaches in estimating body weight in water buffalos, and will support sustainable animal husbandry by contributing to decision making processes in the field of animal science.