Scientific Reports (Feb 2023)

SH2D4A promotes centrosome maturation to support spindle microtubule formation and mitotic progression

  • Ryuzaburo Yuki,
  • Yuki Ikeda,
  • Ryuji Yasutake,
  • Youhei Saito,
  • Yuji Nakayama

DOI
https://doi.org/10.1038/s41598-023-29362-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 15

Abstract

Read online

Abstract Mitotic progression requires the precise formation of spindle microtubules based on mature centrosomes. During the G2/M transition, centrosome maturation progresses, and associated microtubules bundle to form mitotic spindle fibers and capture the chromosomes for alignment at the cell equator. Mitotic kinases-induced phosphorylation signaling is necessary for these processes. Here, we identified SH2 domain-containing protein 4A (SH2D4A/PPP1R38) as a new mitotic regulator. SH2D4A knockdown delays mitotic progression. The time-lapse imaging analysis showed that SH2D4A specifically contributes to the alignment of chromosomes. The cold treatment assay and microtubule regrowth assay indicated that SH2D4A promotes microtubule nucleation to support kinetochore–microtubule attachment. This may be due to the centrosome maturation by SH2D4A via centrosomal recruitment of pericentriolar material (PCM) such as cep192, γ-tubulin, and PLK1. SH2D4A was found to be a negative regulator of PP1 phosphatase. Consistently, treatment with a PP1 inhibitor rescues SH2D4A-knockdown-induced phenotypes, including the microtubule nucleation and centrosomal recruitment of active PLK1. These results suggest that SH2D4A is involved in PCM recruitment to centrosomes and centrosome maturation through attenuation of PP1 phosphatases, accelerating the spindle formation and supporting mitotic progression.