Advances in Bridge Engineering (Oct 2023)

Numerical modeling of hydrodynamic added mass and added damping for elastic bridge pier

  • Yanfeng Wang,
  • Zilong Ti

DOI
https://doi.org/10.1186/s43251-023-00104-2
Journal volume & issue
Vol. 4, no. 1
pp. 1 – 16

Abstract

Read online

Abstract This paper presents a numerical model using the boundary element method for determining the hydrodynamic added mass and added damping of an elastic bridge pier with arbitrary cross-section. Combining the Euler–Bernoulli beam theory with the constant boundary element method, the modal superposition method is used to consider the deformable boundary conditions on the surface of elastic piers to couple the interaction between the elastic pier and water, and the equations for the hydrodynamic added mass and added damping of a general section pier considering the effect of pier-water coupling are derived. The accuracy of the developed model is verified by a benchmark experiment. The developed model is calculated for circular piers and compared with the added mass analytical formulation. The effects of oscillating frequency and structure geometry on the added mass and added damping are further investigated. Results demonstrate that the developed model can be used to solve the hydrodynamic added mass and added damping problems of the elastic bridge pier. Compared to the analytical formula, the developed method incorporates the consideration of added damping in the analysis of the pier-water coupling problem. Oscillating frequency and structure geometry have significant effects on added mass and added damping.

Keywords