AMPK phosphorylates NAMPT to regulate NAD+ homeostasis under ionizing radiation
Xiaoyu Liao,
Xiaoke Huang,
Xin Li,
Xuemei Qiu,
Mi Li,
Rui Liu,
Tao He,
Qingfeng Tang
Affiliations
Xiaoyu Liao
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
Xiaoke Huang
Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, Sichuan 610500, People's Republic of China
Xin Li
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
Xuemei Qiu
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
Mi Li
UTHealth Graduate School of Biomedical Sciences, Houston, TX 77225, USA
Rui Liu
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
Tao He
Department of cardio-thoracic Surgery, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, People's Republic of China
Qingfeng Tang
Department of Urology, Xindu district People's hospital of Chengdu, Chengdu, Sichuan 610500, People's Republic of China
Radiation-induced oral mucositis is the most common complication for patients who receive head/neck radiotherapy. Nicotinamide adenine dinucleotide (NAD+) is vital for DNA damage repair under ionizing radiation, through functioning as either the substrate for protein poly(ADP-ribosyl)ation at DNA break sites or the cofactor for multiple DNA repair-related enzymes, which therefore can result in a significant consumption of cellular NAD+ during DNA repair. Mammalian cells produce NAD+ mainly by recycling nicotinamide via the salvage pathway, in which the rate-limiting step is governed by nicotinamide phosphoribosyltransferase (NAMPT). However, whether NAMPT is co-opted under ionizing radiation to timely fine-tune NAD+ homeostasis remains elusive. Here we show that ionizing radiation evokes NAMPT activation within 30 min without apparent changes in its protein expression. AMPK rapidly phosphorylates NAMPT at S314 under ionizing radiation, which reinforces the enzymatic activity of NAMPT by increasing NAMPT binding with its substrate phosphoribosyl pyrophosphate (PRPP). AMPK-mediated NAMPT S314 phosphorylation substantially restores NAD+ level in the irradiated cells and facilitates DNA repair and cell viability. Our findings demonstrate a new post-translational modification-based signalling route, by which cells can rapidly orchestrate NAD+ metabolism to support DNA repair, thereby highlighting NAMPT as a potential target for the prevention of ionizing radiation-induced injuries.