PLoS ONE (Jan 2012)

The free energy barrier for arginine gating charge translation is altered by mutations in the voltage sensor domain.

  • Christine S Schwaiger,
  • Sara I Börjesson,
  • Berk Hess,
  • Björn Wallner,
  • Fredrik Elinder,
  • Erik Lindahl

DOI
https://doi.org/10.1371/journal.pone.0045880
Journal volume & issue
Vol. 7, no. 10
p. e45880

Abstract

Read online

The gating of voltage-gated ion channels is controlled by the arginine-rich S4 helix of the voltage-sensor domain moving in response to an external potential. Recent studies have suggested that S4 moves in three to four steps to open the conducting pore, thus visiting several intermediate conformations during gating. However, the exact conformational changes are not known in detail. For instance, it has been suggested that there is a local rotation in the helix corresponding to short segments of a 3(10)-helix moving along S4 during opening and closing. Here, we have explored the energetics of the transition between the fully open state (based on the X-ray structure) and the first intermediate state towards channel closing (C1), modeled from experimental constraints. We show that conformations within 3 Å of the X-ray structure are obtained in simulations starting from the C1 model, and directly observe the previously suggested sliding 3(10)-helix region in S4. Through systematic free energy calculations, we show that the C1 state is a stable intermediate conformation and determine free energy profiles for moving between the states without constraints. Mutations indicate several residues in a narrow hydrophobic band in the voltage sensor contribute to the barrier between the open and C1 states, with F233 in the S2 helix having the largest influence. Substitution for smaller amino acids reduces the transition cost, while introduction of a larger ring increases it, largely confirming experimental activation shift results. There is a systematic correlation between the local aromatic ring rotation, the arginine barrier crossing, and the corresponding relative free energy. In particular, it appears to be more advantageous for the F233 side chain to rotate towards the extracellular side when arginines cross the hydrophobic region.