Chemosensors (Jun 2024)

SO<sub>2</sub> Detection over a Wide Range of Concentrations: An Exploration on MOX-Based Gas Sensors

  • Arianna Rossi,
  • Elena Spagnoli,
  • Alan Visonà,
  • Danial Ahmed,
  • Marco Marzocchi,
  • Vincenzo Guidi,
  • Barbara Fabbri

DOI
https://doi.org/10.3390/chemosensors12060111
Journal volume & issue
Vol. 12, no. 6
p. 111

Abstract

Read online

Noxious gases such as sulfur-containing compounds can inflict several different adverse effects on human health even when present at extremely low concentrations. The accurate detection of these gases at sub-parts per million levels is imperative, particularly in fields where maintaining optimal air quality is crucial. In this study, we harnessed the capabilities of nanostructured metal-oxide semiconducting materials to detect sulfur dioxide, since they have been extensively explored starting from the last decades for their effectiveness in monitoring toxic gases. We systematically characterized the sensing performance of seven chemoresistive devices. As a result, the SnO2:Au sensor demonstrated to be the most promising candidate for sulfur dioxide detection, owing to its highly sensitivity (0.5–10 ppm), humidity-independent behavior (30 RH% onwards), and selectivity vs. different gases at an operating temperature of 400 °C. This comprehensive investigation facilitates a detailed performance comparison to other devices explored for the SO2 sensing, supporting advancements in gas detection technology for enhanced workplace and environmental safety.

Keywords