Biofilm (Jun 2024)

Phenotypic and proteomic differences in biofilm formation of two Lactiplantibacillus plantarum strains in static and dynamic flow environments

  • Linda Huijboom,
  • Parisa Rashtchi,
  • Marcel Tempelaars,
  • Sjef Boeren,
  • Erik van der Linden,
  • Mehdi Habibi,
  • Tjakko Abee

Journal volume & issue
Vol. 7
p. 100197

Abstract

Read online

Lactiplantibacillus plantarum is a Gram-positive non-motile bacterium capable of producing biofilms that contribute to the colonization of surfaces in a range of different environments. In this study, we compared two strains, WCFS1 and CIP104448, in their ability to produce biofilms in static and dynamic (flow) environments using an in-house designed flow setup. This flow setup enables us to impose a non-uniform flow velocity profile across the well. Biofilm formation occurred at the bottom of the well for both strains, under static and flow conditions, where in the latter condition, CIP104448 also showed increased biofilm formation at the walls of the well in line with the higher hydrophobicity of the cells and the increased initial attachment efficacy compared to WCFS1. Fluorescence and scanning electron microscopy showed open 3D structured biofilms formed under flow conditions, containing live cells and ∼30 % damaged/dead cells for CIP104448, whereas the WCFS1 biofilm showed live cells closely packed together. Comparative proteome analysis revealed minimal changes between planktonic and static biofilm cells of the respective strains suggesting that biofilm formation within 24 h is merely a passive process. Notably, observed proteome changes in WCFS1 and CIP104448 flow biofilm cells indicated similar and unique responses including changes in metabolic activity, redox/electron transfer and cell division proteins for both strains, and myo-inositol production for WCFS1 and oxidative stress response and DNA damage repair for CIP104448 uniquely. Exposure to DNase and protease treatments as well as lethal concentrations of peracetic acid showed highest resistance of flow biofilms. For the latter, CIP104448 flow biofilm even maintained its high disinfectant resistance after dispersal from the bottom and from the walls of the well. Combining all results highlights that L. plantarum biofilm structure and matrix, and physiological state and stress resistance of cells is strain dependent and strongly affected under flow conditions. It is concluded that consideration of effects of flow on biofilm formation is essential to better understand biofilm formation in different settings, including food processing environments.

Keywords