PLoS ONE (Jan 2020)

netboxr: Automated discovery of biological process modules by network analysis in R.

  • Eric Minwei Liu,
  • Augustin Luna,
  • Guanlan Dong,
  • Chris Sander

DOI
https://doi.org/10.1371/journal.pone.0234669
Journal volume & issue
Vol. 15, no. 11
p. e0234669

Abstract

Read online

SummaryLarge-scale sequencing projects, such as The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC), have generated high throughput sequencing and molecular profiling data sets, but it is still challenging to identify potentially causal changes in cellular processes in cancer as well as in other diseases in an automated fashion. We developed the netboxr package written in the R programming language, which makes use of the NetBox algorithm to identify candidate cancer-related functional modules. The algorithm makes use of a data-driven, network-based approach that combines prior knowledge with a network clustering algorithm, obviating the need for and the limitation of independently curated functionally labeled gene sets. The method can combine multiple data types, such as mutations and copy number alterations, leading to more reliable identification of functional modules. We make the tool available in the Bioconductor R ecosystem for applications in cancer research and cell biology.Availability and implementationThe netboxr package is free and open-sourced under the GNU GPL-3 license R package available at https://www.bioconductor.org/packages/release/bioc/html/netboxr.html.