MATEC Web of Conferences (Jan 2022)

Impact of slag on carbonation rate of concrete based on calcium aluminate cement

  • Bašić Alma-Dina,
  • Serdar Marijana,
  • Mikanovic Ingrid,
  • Walenta Gunther

DOI
https://doi.org/10.1051/matecconf/202236402020
Journal volume & issue
Vol. 364
p. 02020

Abstract

Read online

Throughout their service life, concrete structures are exposed to various environmental conditions that affect their durability. The cementitious matrix inevitably comes into contact with air, which leads to a progressive carbonation reaction. As a result of carbonation, changes occur in the microstructure and porosity of the cementitious matrix. Calcium aluminate cement is produced to increase the resistance of composites to aggressive environments, but its application is limited by the occurrence of conversion process. The addition of slag inhibits the conversion process of calcium aluminate cement and prevents a reduction in compressive strength due to the formation of C2ASH8 hydrate, while contributing to the net zero commitment of the cement industry. It remains an open question how these changes in microstructure caused by the addition of slag affect the carbonation rate of calcium aluminate cement-based concrete. Therefore, the objective of this study was to determine the effects of slag on the microstructure and porosity of calcium aluminate-based concrete before and after accelerated carbonation. For this purpose, the mechanical properties, porosity, and reaction product of a concrete mix containing 30% calcium aluminate cement replacement by slag were compared to calcium aluminate cement-based concrete before and after exposure to 3% CO2 for 7 and 28 days. Thermogravimetric analysis (TGA) and mercury intrusion porosimetry (MIP) were tested to understand the changes in reaction products and pore size distribution, respectively.