Vibration (Jun 2024)
Finite Element Analysis versus Empirical Modal Analysis of a Basketball Rim and Backboard
Abstract
The first goal of this research was to document the process of using the MODAL analysis system of the ANSYS 2024R1 student edition to create a finite element model of the modes and frequencies of vibration of one basketball rim and backboard design. This finite element model included the use of steel for the rim and its mount, a tempered glass backboard, and an aluminum frame behind the backboard. After a mesh was created, fixed support boundary conditions were applied to the four corners of the aluminum frame, followed by the theoretical modal analysis. The second goal was to validate this model by comparing the finite element calculated mode shapes and frequencies to the empirical modal analysis previously measured at the United States Military Academy at West Point, New York. Five mode shapes and frequencies agreed rather well between the theoretical finite element analysis and previously published empirical modal analysis, specifically where the rim was vibrating in the vertical direction, which was the direction that the accelerometer was aligned for the empirical modal analysis. These five modes were addressed from a finite element model validation standpoint by a 99.5% confidence in a 98.09% cross-correlation with empirical modal analysis data, and from a verification standpoint by employing a refined-mesh. However, three theoretical mode shapes missed by the empirical modal analysis were found where the vibration of the rim was confined to the horizontal plane, which was orthogonal to the orientation of our accelerometer.
Keywords