PLoS ONE (Jan 2012)

Comprehensive analysis of ultrasonic vocalizations in a mouse model of fragile X syndrome reveals limited, call type specific deficits.

  • Snigdha Roy,
  • Nick Watkins,
  • Detlef Heck

DOI
https://doi.org/10.1371/journal.pone.0044816
Journal volume & issue
Vol. 7, no. 9
p. e44816

Abstract

Read online

Fragile X syndrome (FXS) is a well-recognized form of inherited mental retardation, caused by a mutation in the fragile X mental retardation 1 (Fmr1) gene. The gene is located on the long arm of the X chromosome and encodes fragile X mental retardation protein (FMRP). Absence of FMRP in fragile X patients as well as in Fmr1 knockout (KO) mice results, among other changes, in abnormal dendritic spine formation and altered synaptic plasticity in the neocortex and hippocampus. Clinical features of FXS include cognitive impairment, anxiety, abnormal social interaction, mental retardation, motor coordination and speech articulation deficits. Mouse pups generate ultrasonic vocalizations (USVs) when isolated from their mothers. Whether those social ultrasonic vocalizations are deficient in mouse models of FXS is unknown. Here we compared isolation-induced USVs generated by pups of Fmr1-KO mice with those of their wild type (WT) littermates. Though the total number of calls was not significantly different between genotypes, a detailed analysis of 10 different categories of calls revealed that loss of Fmr1 expression in mice causes limited and call-type specific deficits in ultrasonic vocalization: the carrier frequency of flat calls was higher, the percentage of downward calls was lower and that the frequency range of complex calls was wider in Fmr1-KO mice compared to their WT littermates.