Applied Sciences (May 2020)

Hydroquinone-Based Fabrication of Gold Nanorods with a High Aspect Ratio and LSPR Greater than 850 nm to Be Used as a Surface Plasmon Resonance Platform for Rapid Detection of Thiophanate Methyl

  • Hang Nguyen Thi Nhat,
  • Ngoc Thuy Trang Le,
  • Nguyen Thi Phuong Phong,
  • Dai Hai Nguyen,
  • Minh-Tri Nguyen-Le

DOI
https://doi.org/10.3390/app10103654
Journal volume & issue
Vol. 10, no. 10
p. 3654

Abstract

Read online

The use of gold nanorods (AuNRs) as surface-enhanced Raman scattering (SERS) substrates has gained much attraction due to their remarkably aspect-ratio-dependent plasmonic properties. In this report, we described the development of AuNRs with a high aspect ratio and longitudinal surface plasmon resonance (LSPR) >850 nm through a hydroquinone-based fabrication with minor modifications. The synthesis started with the reduction of chloroauric acid (HAuCl4) by sodium borohydride (NaBH4) to make gold nanoseeds from which AuNRs were grown with the aid of silver nitrate (AgNO3), HAuCl4, cetyltrimethylammonium bromide (CTAB), and hydroquinone (HQ). Scanning electron microscopy coupled with energy-dispersive X-ray (SEM-EDX), Transmission electron microscope (TEM), X-ray diffraction (XRD) and Ultra-violet-Visible spectroscopy (UV-Vis) were performed to study the shape, size, and structural and optical properties of AuNRs, respectively. The results showed that AuNRs with high aspect ratios (AR > 3) were single crystals with a heterogenous size distribution, and that the growth of Au nanoseeds into AuNRs took place along the [001] direction. AuNRs exhibited two plasmon resonance peaks at 520 nm and 903 nm, while gold nanoseeds had only a plasmon resonance peak at 521 nm. The as-synthesized AuNRs also showed SERS effects for thiophanate methyl, a broad-spectrum fungicide, with the limit of detection down to 5 mg/L of the fungicide. AuNR-coated glass can serve as a SERS-based sensing platform for rapid detection of thiophanate methyl with high sensitivity and reproducibility.

Keywords