IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (Jan 2023)

Mapping Surface Organic Soil Properties in Arctic Tundra Using C-Band SAR Data

  • Yonghong Yi,
  • Kazem Bakian-Dogaheh,
  • Mahta Moghaddam,
  • Umakant Mishra,
  • John S. Kimball

DOI
https://doi.org/10.1109/JSTARS.2023.3236117
Journal volume & issue
Vol. 16
pp. 1403 – 1413

Abstract

Read online

Surface soil organic carbon (SOC) content is among the first-order controls on the rate and extent of Arctic permafrost thaw. There is a large discrepancy in current SOC estimates in Arctic tundra, where sparse measurements are unable to capture SOC complexity over the vast tundra region. Synthetic aperture radar (SAR) data are sensitive to surface vegetation, roughness, and moisture conditions, and may provide useful information on surface SOC properties. Here, we investigated the potential of multitemporal Sentinel-1 C-band SAR data for regional SOC mapping in the Arctic tundra through principal component analysis (PCA). Multiple in situ SOC datasets in the Alaska North Slope were assembled to generate a consistent surface (0–10 cm) SOC and bulk density dataset (n = 97). The radar VV backscatter shows a strong correlation with surface SOC, but the correlation varies greatly with surface snow, moisture, and freeze/thaw conditions. However, the first principal component (PC1) of radar backscatter time series from different years shows spatial consistency representing dominant and persistent surface backscatter behavior. The PC1 also shows a strong linear correlation with surface SOC concentration (R = 0.65, p<0.01), and an exponential relationship with bulk density (R = −0.65, p<0.01). The resulting predicted SOC maps show much lower soil bulk density and higher SOC concentration in the southern shrub tundra area than in the northern coastal region, consistent with in situ data. Our analysis shows that it is possible to separate the effects of different factors on the radar backscatter response using PCA and multitemporal SAR data, which may lead to more effective satellite-based methods for Arctic SOC mapping.

Keywords