Energies (Nov 2024)
Overvoltage Suppression Strategy for VSG-Based DFIGs Under Commutation Failures of HVDC Transmission Systems
Abstract
Virtual synchronous generator (VSG) control, which can provide inertia output, damp power oscillations, and offer frequency and voltage support to power grids, has become a growing trend in the control field of wind power generation. As a new technology, there are still challenges that VSG control has not solved well, such as transient overvoltage suppression. A kind of transient overvoltage, which often occurs during the commutation failures of HVDC transmission systems, will trigger a mass of wind turbine generators (WTGs) disconnecting from grids. To reduce the grid-disconnection risk of the virtual synchronous generator control-based doubly fed induction generators (VSG-DFIGs), this paper first analyzes the mechanism of the automatic voltage regulation (AVR) control usually employed by VSG-DFIGs, then proposes measures to suppress the transient overvoltage. To solve the problem of the reactive power response lag issued by VSG-DFIGs, which will further aggravate the transient overvoltage in continuous low and high voltage faults, the time constant of the AVR control is switched. To fully exploit the potential of the DFIGs’ reactive power support, the droop coefficient of the AVR control is switched during the abnormal voltage stages. The switched droop coefficient will change the rotor excitation current magnitude, thus adjusting the internal potential of a DFIG, finally better supporting or suppressing the terminal voltage during the low or high voltage periods. Simulation results based on the DIgSILENT/PowerFactory platform demonstrate that the proposed method can effectively suppress the transient overvoltage that occurs in continuous low and high voltage events caused by the commutation failures of HVDC transmission systems, reducing the number of WTGs disconnecting from the grids.
Keywords