International Journal of Molecular Sciences (Dec 2022)

Analysis of Serum Advanced Glycation Endproducts Reveals Methylglyoxal-Derived Advanced Glycation MG-H1 Free Adduct Is a Risk Marker in Non-Diabetic and Diabetic Chronic Kidney Disease

  • Naila Rabbani,
  • Antonysunil Adaikalakoteswari,
  • James R. Larkin,
  • Sianna Panagiotopoulos,
  • Richard J. MacIsaac,
  • Dennis K. Yue,
  • Gregory R. Fulcher,
  • Matthew A. Roberts,
  • Merlin Thomas,
  • Elif Ekinci,
  • Paul J. Thornalley

DOI
https://doi.org/10.3390/ijms24010152
Journal volume & issue
Vol. 24, no. 1
p. 152

Abstract

Read online

Accumulation of advanced glycation endproducts (AGEs) is linked to decline in renal function, particularly in patients with diabetes. Major forms of AGEs in serum are protein-bound AGEs and AGE free adducts. In this study, we assessed levels of AGEs in subjects with and without diabetes, with normal renal function and stages 2 to 4 chronic kidney disease (CKD), to identify which AGE has the greatest progressive change with decline in renal function and change in diabetes. We performed a cross-sectional study of patients with stages 2–4 CKD, with and without diabetes, and healthy controls (n = 135). Nine protein-bound and free adduct AGEs were quantified in serum. Most protein-bound AGEs increased moderately through stages 2–4 CKD whereas AGE free adducts increased markedly. Methylglyoxal-derived hydroimidazolone MG-H1 free adduct was the AGE most responsive to CKD status, increasing 8-fold and 30-fold in stage 4 CKD in patients without and with diabetes, respectively. MG-H1 Glomerular filtration flux was increased 5-fold in diabetes, likely reflecting increased methylglyoxal glycation status. We conclude that serum MG-H1 free adduct concentration was strongly related to stage of CKD and increased in diabetes status. Serum MG-H1 free adduct is a candidate AGE risk marker of non-diabetic and diabetic CKD.

Keywords