Scientific Reports (Jan 2024)

Non-invasive quantification of corneal vascularization using anterior segment optical coherence tomography angiography

  • Julia Aschauer,
  • Michal Klimek,
  • Ruth Donner,
  • Jan Lammer,
  • Philipp Roberts,
  • Markus Schranz,
  • Gerald Schmidinger

DOI
https://doi.org/10.1038/s41598-024-52598-z
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 9

Abstract

Read online

Abstract The presence of corneal vascularization (CV) interferes with the angiogenic and immune privilege of the cornea, risking rejection in eyes following keratoplasty. Pre-operative (lymph)-angioregression is a promising therapeutic approach, but objective monitoring by non-invasive CV imaging is needed. The purpose of this study was to investigate anterior-segment optical coherence tomography angiography (AS-OCTA) for CV visualization and quantification, and to show its superiority over slit-lamp photography in high-risk eyes scheduled for keratoplasty. This institutional pilot study included 29 eyes of 26 patients (51 ± 16 years, 8 female) with significant CV scheduled for keratoplasty that were imaged by slit-lamp photography (Zeiss SL 800) and AS-OCTA (Zeiss Plex Elite 9000). After manual corneal layer segmentation correction, CV maximum/relative depth was measured with the inbuilt software. Slit-lamp photographs and AS-OCTA images were compared for visualization of vascular details. Angiotool software allowed a semi-automated determination of CV-related parameters in the vascular complex of AS-OCTA images. The predominant causes of CV were the herpes simplex virus keratitis (n = 7) and chemical burn (n = 4). Visualization of vascular morphology in AS-OCTA was superior to slit-lamp photography in all except one eye. Vascular metrics including total vessel length, number of junctions/endpoints, junction density, lacunarity, and vessel area/density were defined using Angiotool, with CV depth localization despite scarring and opacification. AS-OCTA proved effective for angioregressive treatment monitoring. AS-OCTA enables non-invasive and objective three-dimensional visualization of corneal vascularization superior to slit-lamp photography, and could be a precious tool for monitoring angioregressive preconditioning prior to keratoplasty.