PLoS Computational Biology (Mar 2022)

Dissecting mutational allosteric effects in alkaline phosphatases associated with different Hypophosphatasia phenotypes: An integrative computational investigation.

  • Fei Xiao,
  • Ziyun Zhou,
  • Xingyu Song,
  • Mi Gan,
  • Jie Long,
  • Gennady Verkhivker,
  • Guang Hu

DOI
https://doi.org/10.1371/journal.pcbi.1010009
Journal volume & issue
Vol. 18, no. 3
p. e1010009

Abstract

Read online

Hypophosphatasia (HPP) is a rare inherited disorder characterized by defective bone mineralization and is highly variable in its clinical phenotype. The disease occurs due to various loss-of-function mutations in ALPL, the gene encoding tissue-nonspecific alkaline phosphatase (TNSALP). In this work, a data-driven and biophysics-based approach is proposed for the large-scale analysis of ALPL mutations-from nonpathogenic to severe HPPs. By using a pipeline of synergistic approaches including sequence-structure analysis, network modeling, elastic network models and atomistic simulations, we characterized allosteric signatures and effects of the ALPL mutations on protein dynamics and function. Statistical analysis of molecular features computed for the ALPL mutations showed a significant difference between the control, mild and severe HPP phenotypes. Molecular dynamics simulations coupled with protein structure network analysis were employed to analyze the effect of single-residue variation on conformational dynamics of TNSALP dimers, and the developed machine learning model suggested that the topological network parameters could serve as a robust indicator of severe mutations. The results indicated that the severity of disease-associated mutations is often linked with mutation-induced modulation of allosteric communications in the protein. This study suggested that ALPL mutations associated with mild and more severe HPPs can exert markedly distinct effects on the protein stability and long-range network communications. By linking the disease phenotypes with dynamic and allosteric molecular signatures, the proposed integrative computational approach enabled to characterize and quantify the allosteric effects of ALPL mutations and role of allostery in the pathogenesis of HPPs.