Metals (Dec 2020)
Effect of Alloying on the Nucleation and Growth of Laves Phase in the 9–10%Cr-3%Co Martensitic Steels during Creep
Abstract
Five Co-modified P92-type steels with different contents of Cr, W, Mo, B, N, and Re have been examined to evaluate the effect of the chemical composition on the evolution of Laves phase during creep at 650 °C. The creep tests have been carried out at 650 °C under various applied initial stresses ranging from 80 to 200 MPa until rupture. An increase in the B and Cr contents leads to a decrease in the size and volume fraction of M23C6 carbides precipitated during tempering and an increase in their number particle density along the boundaries. In turns, this affects the amount of the nucleation sites for Laves phase during creep. The (W+Mo) content determines the diffusion growth and coarsening of Laves phase during creep. Susceptibility of Laves phase to coarsening with a high rate is caused by the large difference in Gibbs energy between fine and large particles located at the low-angle and high-angle boundaries, respectively, and can cause the creep strength breakdown. The addition of Re to the 10%Cr steel with low N and high B contents provides the slowest coarsening of Laves phase among the steels studied.
Keywords