IEEE Access (Jan 2021)

Cylindrical Shape Decomposition for 3D Segmentation of Tubular Objects

  • Ali Abdollahzadeh,
  • Alejandra Sierra,
  • Jussi Tohka

DOI
https://doi.org/10.1109/ACCESS.2021.3056958
Journal volume & issue
Vol. 9
pp. 23979 – 23995

Abstract

Read online

We develop a cylindrical shape decomposition (CSD) algorithm to decompose an object, a union of several tubular structures, into its semantic components. We decompose the object using its curve skeleton and restricted translational sweeps. For that, CSD partitions the curve skeleton into maximal-length sub-skeletons over an orientation cost, each sub-skeleton corresponds to a semantic component. To find the intersection of the tubular components, CSD translationally sweeps the object in decomposition intervals to identify critical points at which the shape of the object changes substantially. CSD cuts the object at critical points and assigns the same label to parts along the same sub-skeleton, thereby constructing a semantic component. The proposed method further reconstructs the acquired semantic components at the intersection of object parts using generalized cylinders. We apply CSD for segmenting axons in large 3D electron microscopy images and decomposing vascular networks and synthetic objects. We show that our proposal is robust to severe surface noise and outperforms state-of-the-art decomposition techniques in its applications.

Keywords