The Innovation (Jan 2022)
Dawn of complex animal food webs: A new predatory anthozoan (Cnidaria) from Cambrian
Abstract
Cnidarians diverged very early in animal evolution; therefore, investigations of the morphology and trophic levels of early fossil cnidarians may provide critical insights into the evolution of metazoans and the origin of modern marine food webs. However, there has been a lack of unambiguous anthozoan cnidarians from Ediacaran assemblages, and undoubted anthozoans from the Cambrian radiation of metazoans are very rare and lacking in ecological evidence. Here, we report a new polypoid cnidarian, Nailiana elegans gen. et sp. nov., represented by multiple solitary specimens from the early Cambrian Chengjiang biota (∼520 Ma) of South China. These specimens show eight unbranched tentacles surrounding a single opening into the gastric cavity, which may have born multiple mesenteries. Thus, N. elegans displays a level of organization similar to that of extant cnidarians. Phylogenetic analyses place N. elegans in the stem lineage of Anthozoa and suggest that the ancestral anthozoan was a soft-bodied, solitary polyp showing octoradial symmetry. Moreover, one specimen of the new polyp preserves evidence of predation on an epifaunal lingulid brachiopod. This case provides the oldest direct evidence of macrophagous predation, the advent of which may have triggered the emergence of complex trophic/ecological relationships in Cambrian marine communities and spurred the explosive radiation of animal body plans. Public summary: • Polypoid animal from early Cambrian of China is a stem-group anthozoan cnidarian • Anthozoan ancestor inferred to be soft-bodied, solitary polyp of octoradial symmetry • The new anthozoan provides the oldest direct evidence of macrophagous predation • Macrophagous predation may have triggered complex food webs in early Cambrian